Partial duality and Bollobás and Riordan's ribbon graph polynomial
نویسنده
چکیده
Recently S. Chmutov introduced a generalization of the dual of a ribbon graph (or equivalently an embedded graph) and proved a relation between Bollobás and Riordan’s ribbon graph polynomial of a ribbon graph and of its generalized duals. Here I show that the duality relation satisfied by the ribbon graph polynomial can be understood in terms of knot theory and I give a simple proof of the relation which used the homfly polynomial of a knot.
منابع مشابه
Twisted Duality and Polynomials of Embedded Graphs
We consider two operations on the edge of an embedded graph (or equivalently a ribbon graph): giving a half-twist to the edge and taking the partial dual with respect to the edge. These two operations give rise to an action of S3 e(G), the ribbon group of G, on G. We show that this ribbon group action gives a complete characterization of duality in that if G is any cellularly embedded graph wit...
متن کاملNon-orientable quasi-trees for the Bollobás-Riordan polynomial
We extend the quasi-tree expansion of A. Champanerkar, I. Kofman, and N. Stoltzfus to not necessarily orientable ribbon graphs. We study the duality properties of the Bollobás-Riordan polynomial in terms of this expansion. As a corollary, we get a “connected state” expansion of the Kauffman bracket of virtual link diagrams. Our proofs use extensively the partial duality of S. Chmutov.
متن کاملA ug 2 01 4 A POLYNOMIAL INVARIANT AND DUALITY FOR TRIANGULATIONS
The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G , TG(X,Y ) = TG∗(Y,X) where G∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial com...
متن کاملA Polynomial Invariant and Duality for Triangulations
The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G, TG(X,Y ) = TG∗(Y,X) where G ∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial com...
متن کاملar X iv : 0 90 3 . 53 12 v 2 [ m at h . C O ] 1 1 M ay 2 00 9 GRAPHS , LINKS , AND DUALITY ON SURFACES
We introduce a polynomial invariant of graphs on surfaces, PG , generalizing the classical Tutte polynomial. Poincaré duality on surfaces gives rise to a natural duality result for PG , analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where Tutte polynomial is known as the partition function of the Pott...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010